

World Journal of Current Medical and Pharmaceutical Research

Content available at www.wjcmpr.com ISSN: 2582-02

GENERAL OVERVIEW OF THE RISK FACTORS, PATHOGENESIS, AND COMBINED TREATMENTS FOR HASHIMOTO'S THYROIDITIS (HT)

Yash Srivastav*1, Akhandnath Prajapati2, Meera Kumari3, Madhaw Kumar⁴ ¹²³⁴ Goel Institute of Pharmacy & Sciences (GIPS), Lucknow, Uttar Pradesh, India

Article History

Received on: 21-07-2023 Revised on: 04-08-2023 Accepted on: 18-09-2023

Abstract

In regions of the world where iodine is abundant, Hashimoto's thyroiditis, also known as Hashimoto's disease or autoimmune thyroiditis, is the most prevalent cause of hypothyroidism. It is a chronic inflammation of the thyroid gland. It is characterized by autoimmune-mediated thyroid gland destruction, which results in progressive thyroid failure, either with or without goitre formation. In young to middle-aged women, Hashimoto's thyroiditis typically starts as a painless, diffuse, firm thyroid gland enlargement those progresses to hypothyroidism. Many people don't initially exhibit hypothyroidism, and some don't even have goitre or may have an atrophic thyroid gland. Hashimoto's thyroiditis (HT), also known as chronic autoimmune thyroiditis, is an inflammatory condition that is characterized by parenchymal atrophy, fibrosis, and diffuse lymphocytic infiltration. Being the main source of primary hypothyroidism in regions with adequate iodine. With the help of various criteria, such as physical examination, blood tests for thyroid hormone levels (TSH is low, T3 and T4 are tall, for example), serum cholesterol and triglycerides, blood glucose, and radioactive iodine uptake, it is possible to distinguish between infections and clutter. According to estimates from several thyroid disease studies, 42 million persons in India are estimated to have the ailment. The pathogenesis, causes, risk factors and combination therapy linked to Hashimoto's thyroiditis are discussed in this review study.

Keywords: Hashimoto's thyroiditis, Etiology, Epidemiology, Risk factors, Signs and Symptoms, Pathophysiology, Treatments.

This article is licensed under a Creative Commons Attribution-Non-commercial 4.0 International License. Copyright © 2023 Author(s) retains the copyright of this article.

*Corresponding Author

Yash Srivastav

Goel Institute of Pharmacy & Sciences (GIPS), Lucknow, Uttar Pradesh, India.

DOI: https://doi.org/10.37022/wjcmpr.v5i5.290

Introduction

Due to a decline in immunologic tolerance to immune cells that are prone to auto-reactivity, thyroid disease is brought on when the immune system starts attacking its own molecules. Autoimmune illnesses frequently attack the thyroid gland, which is prone to hypothyroidism, lymphocytic thyroiditis (Hashimoto's thyroiditis), and hyperthyroidism (Graves' disease) [1,2]. The hypothalamus, pituitary gland, and thyroid hub control the production of thyroid hormones. In tropical regions, the hypothalamus secretes thyrotrophic-releasing hormones (TRH), which cause the pituitary gland to release thyroid-stimulating hormones (TSH). TSH works hardest to target and increase thyroid hormone production. Thyroid

hormones increase the body's ability to digest food and use oxygen, have calorie-burning effects, and stimulate the central nervous system while also promoting growth and mobility. Thyroxine (T4) and triiodothyronine (T3) are the two most important thyroid hormones. T3 hormone is the most often used hormone that serves as an organic control [3].Autoantigens found in the thyroid gland trigger an inappropriate immune response that results in thyroid disorders. Hypothyroidism, lymphocytic thyroiditis (Hashimoto's thyroiditis), and hyperthyroidism are the three main autoimmune thyroid disorders. The thyroid gland is underactive and generates too little thyroid hormone when someone has hypothyroidism. A hoarse voice, slurred speech, pudgy face, drooping eyelids, intolerance to cold weather, constipation, weight gain, dry skin, dry hair, and depression are typical signs of hypothyroidism. Cardiovascular disease, osteoporosis, being overweight, celiac disease, and diabetes are all more common among hypothyroid patients [4,5]. According to estimates, 0.2% of men and 2% of women globally suffer from thyroid illness. Stress, heavy metal and hazardous chemical exposure, and tobacco use can all considerably raise

the risk of thyroid diseases [6-9]. The prevalence of thyroid disease is significantly higher in older people than in younger people, and it might also be hidden because of concomitant conditions. Children can also be affected by thyroid problems, which are typically detected in people between the ages of 45 and 65 [10]. In 1912, Dr. Hakuru Hashimoto published the first description of Hashimoto's thyroiditis. The term "Struma Lymphomatosa" was first coined by Hashimoto based on the histology results. Lymphocytic thyroiditis, autoimmune thyroiditis, chronic thyroiditis, and lymph adenoid goitre are some of the names that this condition has gone by over time [11]. Hakaru Hashimoto, a Japanese doctor, initially defined Hashimoto's thyroiditis (HT), also known as chronic lymphocytic thyroiditis or Hashimoto's illness, as an enlarged thyroid with a persistent lymphatic infiltration, in 1912. The hypertrophic or goitrous form of HT is another name for this type of HT that is widely used. A secondary atrophic form of HT usually results from the thyroid shrinking over many years. Ord thyroiditis is characterized by a thyroid gland that is normal or diminished in size at the time of diagnosis and a lymphatic infiltration. Nevertheless, in clinical practise, Hashimoto's thyroiditis (HT) is frequently used to refer to these many types of HT [12]. An autoimmune condition known as Hashimoto's thyroiditis (HT) occurs when the thyroid is attacked by the body's immune system. It will eventually result in the clinical condition known as hypothyroid, which will be caused by a decrease in thyroid activity. Patients with untreated hypothyroidism may experience mild to severe symptoms such as weight gain, depression, constipation, brain fog, exhaustion, hair loss, cold sensitivity, sleep difficulties, goitres (thyroid gland enlargement), and thyroid cancer. Women are 10-20 times as likely than males to get HT illness [5,13,14]. The onset of hypothyroidism, hypovitaminosis D2, and, sometimes, thyroid storm are the problems that are most frequently mentioned. The relationship with autoimmune disorders, such as autoimmune pancreatitis, Sjögren's syndrome, and steroid responsive encephalopathy, has also been shown to exist. Through its effects on regional and systemic hemodynamics, hypothyroidism can have an indirect or direct impact on renal physiology [15]. Both the genetic and environmental components contribute to the development of HT. In practically every patient with autoimmune hypothyroidism, circulating autoantibodies against thyroglobulin and thyroid peroxidase (TPO) have been discovered. Thyroid-stimulating hormone receptor antibodies (TSH-R Ab) are also present in some cases of HT, blocking the receptor rather than activating it as in Graves' illness [16]. The most common cause of hypothyroidism, HT affects the central nervous system, growth and development, the cardiovascular system (CVS), the skeletal system, the gastrointestinal tract (GIT), and reproductive activities in 4-9.5% of adults. For the diagnosis of HT, several biochemical diagnostic tests are available, including the free tetraiodothyronine (T4) hormone test, antithyroid antibody testing, and the thyroid-stimulating hormone (TSH) test. The HT can be treated using a variety of medical approaches, including allopathic and natural medications [17-20]. More frequently impacted are women. At least ten to one is the ratio of women to men. Most women are diagnosed between the ages of 30 and 50, while some sources

claim that this is when it happens more frequently. Levothyroxine at the recommended dose of 1.6 to 1.8 mcg/kg/day makes up the standard of care. The T4 is converted to T3, which is the human body's active form of thyroid hormone. The diagnosis can be difficult and delayed until the disease has progressed further. The most frequent test results show increased thyroid-stimulating hormone (TSH) levels, low levels of free thyroxine (fT4), and raised antithyroid peroxidase (TPO) antibodies. However, patients may display symptoms, indications, and laboratory results consistent with hyperthyroidism or normal levels earlier in the course of the disease. This is due to the possibility of intermittent thyroid gland cell death [21,22].

Fig.1: Hashimoto's thyroiditis disease.

Etiology

The thyroid gland is invaded and destroyed by lymphocytic cells that have been triggered by the autoimmune system. The pathogenesis of HT is significantly influenced by excessively excited T CD4+ cells, those cells' differentiated cells (ThH1, Th2, Th17, and Treg), and other proinflammatory cytokines like interferon and interleukin (IL) [17]. The underlying causes of the pathological autoimmune reaction to the thyroid gland are thought to be multifaceted, with environmental factors including the amount of iodine available, infections, and stress acting as immune modulation triggers. Additionally, it has been suggested that the gut microbiome may influence thyroid immunology and the emergence of HT [23-27]. A multistep process including genetic, immunological, and environmental elements leads to the HT disease. When immune tolerance is lost, the normal thyroid cells stimulate the development of antibodies against thyroid tissue, which destroys the thyroid gland if it is large. Thyroglobulin is thought to be produced by thyroid tissue [28]. It is reported that thyroglobulin proteins have roughly 40 different type of epitope, which has a participation in the pathogenesis of HT [29]. Additionally, the HLA gene, several immunoregulatory genes (CD25, CD40, FOXP3, CTLA4, PTPN22), and thyroid-specific genes (thyroid stimulating hormone receptor, thyroglobulin) all play important roles in this process. The thyroid gland decreases due to the cumulative organ damage caused by activated macrophages and cytotoxic lymphocytes, which frequently results in hypothyroidism over time. As a result, the primary goal of HT treatment is to manage thyroid insufficiency with oral L-thyroxine replacement. However, HT patients frequently report a wide range of symptoms, some of which are scarcely fully explicable by HT alone [30].

Epidemiology

In the United States and those regions of the world where iodine consumption is adequate, Hashimoto is the most frequent cause of hypothyroidism beyond the age of six. According to estimates, the incidence for men is 0.8 per 1000 per year and for women it is 3.5 per 1000 per year. According to twin research, monozygotic twins have a higher concordance of autoimmune thyroiditis than dizygotic twins. Danish research have shown that monozygotic twin concordance rates are 55%, while dizygotic twin concordance rates are barely 3%. According to the study, genetic variables account for 79% of propensity, leaving 21% to environmental and sex hormone influences. In general, thyroid disease is more common as people age [31]. 42 million people in India are thought to have thyroid disease, based on projections from several research on the condition(32). In India, 11% of people have hypothyroidism, compared to 2% in the UK and 46% in the USA. Cities located inland, such as Kolkata, Delhi, Ahmedabad, Bangalore, and Hyderabad, have a greater prevalence (117% vs 95%), compared to coastal cities (such as Mumbai, Goa, and Chennai). Ambrish Mithal, chairman of the Medanta Division of Endocrinology and Diabetes in Gurgaon, India, believes that the country's long-standing iodine deficiency, which has only partially been remedied over the past 20 years, may be the cause of India's higher mean thyroid hormone stimulation glucose range and concentration than that of western nations. People between the ages of 46 and 54 have the highest frequency of hypothyroidism (13 %), whereas those between the ages of 18 and 35 have a lower incidence (7 %) [33].

Risk Factors

The likelihood of thyroid diseases has been linked to a number of factors, including gender, exposure to hazardous chemicals and heavy metals, gluten, and stressMost thyroid conditions affect women more frequently than they do men. Only during puberty can sex-specific changes in the microbiome composition emerge(4). The sex hormones and the existence of two X chromosomes as opposed to one X and one Y chromosome are the primary differences between the immune systems of males and females. In the early stages of embryogenesis in females, one of the X chromosomes is randomly silenced in order to prevent double dosage of X chromosome-derived proteins. Some X-linked genes are overexpressed in females due to incomplete X chromosomal which leaves 15% of inactivation, the active(34,35).Additionally, sex hormones like oestrogen, progesterone, androgens, as well as pro-lectin, may have an impact on many immune system functions as well as the risk, activity, and development of thyroid illnesses. This is because immune cells have hormone receptors. In general, testosterone and progesterone serve as naturally occurring immune suppressants, but oestrogens, especially 17-_β estradiol (E2) and prolactin, act as boosters at least of humeral immunity. In particular, prolactin stimulates the synthesis of proinflammatory cytokines, controls CD4+ T cell growth, and boosts antibody production [9,36,37]. Smoking tobacco is a risk factor for the onset of systemic lupus erthematosus, with a ratio of 1.5 between those who now smoke and those who have never smoked. Smoking results in tissue damage and increases

apoptosis due to free radical production that is high, metalloproteinase release, and activation of Fas expression on lymphocytes, which is linked to the creation of autoantibodies. Smoking also increases levels of fibrinogen, causes leucocytosis, and raises levels of C-reactive protein, intercellular adhesion molecule-I, and E-selectin, all of which contribute to inflammation [8,38]. The neurological and endocrine systems can directly or indirectly impact the immune system due to stress. The acute phase response, which is a component of the innate immune inflammatory response, is activated by stressful conditions and the body releases cortisol as a result. When under stress, the hypothalamicpituitary-adrenal axis and sympathoadrenal system become activated, which increases the release of glucocorticoids and catecholamines, respectively. Stress-induced neuroendocrine hormones may cause immunological dysregulation or increase cytokine production, which might result in atopic thyroid disease. Additionally, stress hormones may affect the differentiation of bipotential helper T-cells away from an H1 phenotype and towards an H2 phenotype by acting on antigenpresenting immune cells [6,39,40].

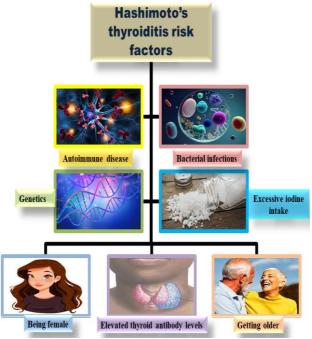


Fig.2: Hashimoto's thyroiditis illness Risk factors.

Sign and Symptoms

thyroid gland follicle-containing thyroglobulin, which is created by iodinating tyrosine residues, is where thyroid hormone is made. Thyroid hormone's main function is to control basal metabolic rate. The main signs of HT include the death of thyroid tissue, which results in reduced thyroid hormone output and a slowing in metabolic activity. In the early stages of the illness, the TSH level does not fluctuate substantially. The decreased thyroid hormone output also has negative effects on a variety of other organ systems. Some of these include bradycardia, which is a CVS dysfunction sign; delayed reflexes and slurred speech; these are nervous system dysfunction symptoms; constipation; enhanced bile reflex; and acites; these are gastrointestinal dysfunction symptoms [41-43]. Body weight increased as a result of fluid retention and a decreased metabolism. Myxedema is caused by hypoglycemia,

altered sensorium, and severe bradycardia. Traumatic injuries, infection, and surgery are the main causes of myxedema. Rheumatic illness and autoimmune disorders might occasionally also impact HT. Additionally, after HT was diagnosed in a patient, depression, irritability, weariness, and bewilderment have occasionally been noted as first symptoms [44].

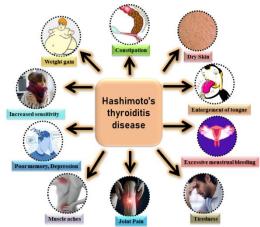


Fig.3: Symptoms and signs of Hashimoto's thyroiditis.

Pathophysiology

Hashimoto's thyroiditis is the result of a multi-step, complex pathophysiology that is influenced by a number of genetic, environmental, and immunological variables. In a nutshell, when the immune system no longer tolerates normal thyroid cells, antibodies are produced that are specific for thyroid tissue, which results in the death of the thyroid gland. When individuals who are genetically susceptible are exposed to the aforementioned environmental conditions, inflammatory alterations in the illness process are started. After the initial inflammatory phase, dendritic cells and macrophages, which are MHC class 2 antigen-presenting cells, infiltrate the thyroid gland. Cells deliver the thyroid gland autoantigen components to the immune system for processing. Thyroglobulin, the primary protein generated in thyroid tissue, is thought to have a key role in the pathophysiology of this disease among a wide range of possible auto-antigens [28]. According to reports, the thyroglobulin protein has about 40 different types of epitopes, each of which is crucial to the pathophysiology of the disease. The epitope recognition pattern of the antibodies in autoimmune thyroid disease is different from that of healthy people, inducing immunological and inflammatory processes [29,45]. An important role in the pathophysiology of the disease is also played by thyroid peroxidase, an enzyme that catalyzes the oxidation of iodine. Additionally, 180 distinct subtypes of thyroid peroxidase antibodies have so far been discovered. The production of autoreactive cells directed towards the thyroid gland, which could stem from deficiencies in central tolerance or defects in the sodium iodide symporter, is the key step in the pathophysiology of thyroid disease, according studies tolerance on the periphery. Loss of immunological tolerance has been linked to hereditary immune abnormalities or a deficiency in the regulatory T-cells that impose the suppression of activity [46]. Self-reactive T-lymphocytes and B-lymphocytes then develop, clonal expand, and mature in

the draining lymph nodes. The core phase of autoimmunity, which is the next step, is characterized by the unchecked synthesis of self-reactive cells and auto antibodies in response to the presenting antigens. Initially, this process takes place in the lymph nodes, but as the illness worsens, the thyroid gland becomes the new site of production, and lymphoid tissue then develops there. Anti-thyroid peroxidase (ATPO) and antithyroglobulin (TGAB) antibodies, which are directed towards thyroid cells, are produced by the activated B-lymphocytes. The thyroid gland is infiltrated by autoreactive T-cells produced during the illness phase, which then mediate the thyroid glands demise by cytotoxicity with the help of CD+8 cells. When macrophages are stimulated in this way, they create a large number of cytokines that, when combined with antibodies, start the process of tissue death. Final stage of the process involves the induction of thyroid gland-destructive enzymes by caspases, which are self-activated through proteolytic cleavage. In a healthy thyroid gland, the creation of new cells and the degeneration of old cells are strictly regulated such that there is always a preponderance of functional cells. Control over the thyroid glands cells being destroyed is lost as the condition progresses. One of the elements that significantly contribute to the deregulation of the thyroid glands normal destructive functions is genetic vulnerability. Initiating the apoptosis process depends on a number of other stimuli that affect the production of Bcl-2, the apoptosis inhibitor, or Fasl membrane ligand [47]. When compared to normal thyroid cells, thyroid cells in tissue afflicted by Hashimoto's thyroiditis are capable of expressing more Fasl proteins, which speeds up the rate of apoptosis. The rate of thyroid gland apoptosis determines the severity of the condition and the clinical result. Expression of these proteins is directly correlated with disease severity, and as the rate of apoptosis rises, less hormonally active thyroid tissue is present, which reduces thyroid hormone synthesis and causes more severe disease signs [48].

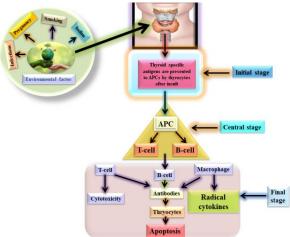


Fig.4:Hashimoto's thyroiditis's pathophysiology [11]. The Identification of Hashimoto's Thyroiditis (HT)

Accurate diagnosis of Hashimoto's thyroiditis depends greatly on determining the patient's metabolic status and the type of lesion present. Assessing thyroid hormone status, which shows glandular function, should be the initial step. Goitre alone, without accompanying hyperthyroid symptoms, is suggestive of Hashimoto's thyroiditis, while goitre in a patient with hypothyroidism is highly believed to be symptomatic of

Hashimoto's thyroiditis. The most widely used lab tests to determine the level of thyroid gland function are the levels of triiodothyronine (T3), tetraiodothyronine (T4), and thyroid stimulating hormone (TSH). TSH has been identified as the most sensitive indicator of hypothyroidism among these variables. Even after the diagnosis has been made, the TSH is routinely checked to gauge the disease's course and response to treatment. The determination of the presence of antithyroid antibodies comes next after the evaluation of the patient's thyroid function status. It should be noted that although antithyroglobulin (TGAB) and antithyroid peroxidase (ATPO) antibodies are both positively connected with Hashimoto's thyroiditis, TGAB has a marginally stronger correlation than ATPO [17]. Antithyroid antibodies would suggest underlying lymphocytic infiltration of the gland and be symptomatic of autoimmune illness even in the absence of hypothyroid symptoms. Anti-microsomal antibodies have been proven to provide improved diagnostic accuracy when compared to antithyroglobulin antibodies in an effort to increase the certainty of the diagnosis. However, fine needle aspiration (FNA) and cytological testing continue to play a crucial role in making the diagnosis when Hashimoto's thyroiditis is clinically suspected but antibody titers are not raised [42,49-51]. The presence of Hurthle cells and the degree of lymphocytic infiltration have been found to be directly correlated with the severity of the disease when defining important cytological findings. Additionally, as the illness worsens, the thyroid glandcolloid is destroyed, and the gaps between follicular cells get smaller, changing the microscopic appearance of FNA biopsy results. The extent of the affected tissue has been discovered to be exactly proportionate to the severity of the disease, providing more explanation of how microscopic appearance correlates with disease severity. The presence of many hyperplastic follicular cells may occasionally result in a false diagnosis of follicular cancer despite the diagnostic sensitivity and accuracy of cytological examination. On the other hand, if there are a lot of Hurthle cells present, some neoplasms, including Hurthle cell tumour, may be misinterpreted as Hashimoto's thyroiditis [52,53]. Another technique that is frequently used to identify thyroid problems is radioactive iodine uptake (RAIU). The use of RAIU in the Hashimoto's thyroiditis diagnosis has been controversial for a long time. An ultrasound can be used to detect thyroid pathology and may be a less intrusive study. The anatomical properties of the gland are revealed by ultrasonography, which also reveals any significant alterations to the gland. Ultrasonography can assist distinguish Hashimoto's thyroiditis in goitres with unclear causes, and it can also help determine the reason for functional impairment and the need for treatment [54,55]. An accurate diagnosis of the condition is frequently made using the thyroid glands morphological characteristics, serum TSH levels, serum antithyroid antiglobulin titers, radioactive iodine uptake of the gland, and reaction to the perchlorate discharge test. In fact, if at least two of the aforementioned tests confirm the diagnosis of Hashimoto's thyroiditis, the doctor can be pretty confident in their decision. IgG-4 thyroiditis and nonIgG-4 thyroiditis have been defined as subtypes of Hashimoto's thyroiditis in several recent investigations. This differential could be significant since non-IgG-4 thyroiditis shows relatively subtle

histological alterations while IgG-4 thyroiditis has been linked to severe lymphoplasmacytic infiltration, substantial fibrosis, and lymphoid follicle development [19,56].

Treatment Options Available For Hashimoto's Thyroiditis ❖ Medical and Surgical treatments for HT

Medication could be used to treat hyperthyroid conditions. The main strategy is to lower the hormone using medications that stabilize the hormone level. Depending on the scenario, treatment lasts typically between 1.5 and 2 years. As soon as the treatment begins, the dosage and thyroid hormone levels both steadily decrease towards stabilization. However, there have been instances where patients did not benefit from the treatment. Another, more extreme treatment option was radioactive iodine in such cases. Nevertheless, because it involved radiation, this treatment should only be used as a last resort. If a female patient is of childbearing age, it is better to hold off on the radioactive iodine therapy unless she is seriously ill. This is because the patient must put off any plans to have children until the radiation-iodine treatment is finished [57–59]. In addition, surgery may be used to treat hyperthyroid conditions by removing the sections of the gland that are swollen. Only when the thyroid functions were stabilized could he be carried out. Patients with hypothyroidism, as opposed to those with hyperthyroidism, would require continual treatment. The goal of hypothyroidism treatment is to replace the body's depleted thyroid hormone, and one natural method is to increase the patient's intake of salt and iodine [60,61]. While Hashimoto's thyroiditis and hypothyroidism patients receive treatment in the form of the synthetic thyroid hormone thyroxin, many still have hypothyroid symptoms while having normal thyroid hormone levels. Therefore, more research is necessary to thoroughly comprehend the mechanisms underlying hyperthyroidism in order to develop an effective medication that will not only treat the symptom of hypothyroidism but also completely eradicate its underlying cause. Although there is currently no medicine available for this illness, surgery may be an option should the goitre enlarge. Surgery should be the last resort, though, as patients will require synthetic thyroid hormone for the rest of their lives if the thyroid gland is removed [62-64].

Gut healing

Leaky gut, or gut dysbiosis, is thought to be the primary factor in the majority of thyroid disorders. In addition to making the intestines less effective at absorbing nutrients, a leaky gut also allows poisons and microorganisms that shouldn't be there to enter the body and cause an immunological reaction. The same factors that can cause a leaky gut in the first place, such as underlying food allergies, frequent use of antibiotics, certain medications, and lifestyle choices, can also cause yeast and/or bacterial overgrowths, which can disturb the lining of the gut and eventually result in autoimmune diseases [65-67]. In general, gut healing involves four steps: 1) eliminating any substances (such as cadmium (Cd), mercury (Hg), arsenic (As), lead (Pb), etc.) that are interfering with the digestive environment, 2) reintroducing healthy digestive enzymes into the digestive system, 3) reestablishing probiotic bacteria in the gut, and 4) repairing the gut lining. The gut can heal by avoiding inflammatory foods including gluten, wheat, dairy, eggs, nuts, and legumes. Foods can be reintroduced once the

digestive system is functioning correctly and is in good condition [68]. The digestive tracts health and function, the immune system's homeostasis, and host energy metabolism are all significantly influenced by the gut microbiome. Probiotics aid in the restoration of healthy gut microorganisms. Maintain a healthy environment for the body by limiting the growth of dangerous bacteria, preventing yeast overgrowth, promoting effective communication between the brain and the intestinal system, reducing inflammation, and more. Probiotics, especially Lactobacillus strains, improve the integrity of the intestinal barrier, which may prevent disease phenotypes like gastrointestinal infections, inflammatory bowel disease, and irritable bowel syndrome from occurring. It may also maintain immune tolerance by reducing bacterial translocation across the intestinal mucosa. Additionally, probiotics can change how immune cells and intestinal epithelia react to bacteria in the intestinal lumen as well as how they influence intestinal immunity [69-72].

> Foods That Interfere With The Digestive Process

Alcohol

Patients with Hashimoto's disease and hypothyroidism are also becoming more intolerant to alcohol. This is due to the direct cellular toxicity that alcohol has on thyroid cells, which results in thyroid suppression and decreased thyroid volume. Additionally, chronically consuming large amounts of alcohol can block the production of the thyroid hormones T3 and T4 as well as lower type II 5'-deiodinase activity, which lowers free T3 levels and prolongs symptoms [73].

Gluten

Wheat, barley, rye, kamut, oats, quinoa, buckwheat, and millet all contain the protein known as gluten. Lectins, saponins, and protease inhibitors are all present in significant concentrations in gluten. When a patient with gluten sensitivity consumes gluten, the gluten will pass through the stomach and into the small intestine, forcing the body to manufacture the chemical zonulin, which weakens the intestinal walls and allows for the passage of particles and liquids. When this occurs, the body gradually develops chronic inflammation, making a person more prone to autoimmune disorders including thyroid disease and other dangerous illnesses. Additionally, because many of the tissues in our body are similar to gluten, when gluten enters the bloodstream as a result of a leaky gut, the body produces antibodies that attack both the gluten and our own tissues [66, 67].

Eggs and dairy

Enzymes found in egg whites are designed to safeguard the yolk during embryo development. Protein chains can be broken apart by these enzymes, rendering the smaller chains worthless. As lysozyme has the capacity to breach the gut barrier and latch on to other proteins and bacteria, it can do so, causing a leaky gut syndrome. On the other side, dairy products contain protease inhibitors that cause leaky gut and increase blood insulin levels since they are insulin-genic. Dairy products also contain A1 casein, which can lead to leaky gut syndrome, worsen thyroid gland inflammation, and eventually affect how well the thyroid gland functions [66,68].

Treating Hashimoto's thyroiditis with herbs

Guggul

The plant C. mukul, popularly known as guggul, helps the thyroid function. C. mukul, a member of the burseraceae family, is known for its aromatic gummy resins, which have a wide range of medical applications. Guggul or Commiphora is said to be beneficial for increasing the thyroid gland intake of iodine and for elevating thyroid peroxidase enzyme activity. The greater T3 produced along with a healthy change in the T3 to T4 ratio indicates a thyroid support effect. By promoting the basic metabolic function of the thyroid, guggul may also lower cholesterol levels. Guggul contains guggulsterones, which work on the bile acid receptor to metabolize lipids and also support hypolipidemic effects of guggul [74-77]. The atherosclerosis-causing process of low-density lipoprotein (LDL) oxidation is inhibited by guggul. With the addition of Guggul, the amount of LDL can also be changed. Through the thyroid function, which has been demonstrated in animal studies, it may also reduce the total fat level [78].

Iris Versicolor

I. Versicolor, popularly known as blue flag, is a little wild iris found in North America's marshy regions. I. Versicolor also aids in the thyroid glands function by increasing T3 synthesis. It is a detoxifying agent that is specifically used to treat goitre and enlarged thyroid. Additionally, it is used to treat splenomegaly and hepatomegaly. Alkaloids, volatile oils, resins, and oleoresin iridin are all found in this plant. Since antiquity, this therapeutic plant has been applied topically, orally, or both. This specifically affects goitre and thyroid hypertrophy [78].

Bladder wracks

Fucus vesiculosus, a genus of brown algae that belongs to the Fucaceae family, is commonly found intertidally, particularly in the Pacific Ocean. The flavonoid flucoxanthin is found in F. vesiculosus, and fucus is said to have the highest antioxidant activity of any edible seaweed. Iodine is abundant in fucus, which also has a high bioavailability of iodine. Additionally, it contains a lot of minerals including calcium and potassium as well as a small quantity of phosphorus, selenium, magnesium, and zinc. Additionally, it is sufficiently rich in vitamins B2, B3, and B6, as well as A, D, E, and K. When ingested in the proper quantity, the vitamins and minerals included in fungi aid to improve thyroid function. Fucus blades that have been recently cut and dried in dim sunlight contain more iodine [79-81]. Additionally, it aids in lowering the blood's trans-sialidase activity, an enzyme that deals with cholesterol buildup. Due to the link between increased lipidemia and decreased metabolism, this may be beneficial for people with hypothyroidism. Iodine concentrations ranged from 16 μg/g in nori (porphyra tenera) to 8165 μg/g in processed kelp granules derived from Laminaria digitata in the 12 species examined. The blood enzyme trans-sialidase, which is linked to the buildup of cholesterol, can also be reduced by fucus. Patients with low thyroid function may benefit from this since hyperlipidemia is linked to impaired metabolism [82].

Conclusion and Future Direction

A general description of Hashimoto's thyroiditis, including its causes, risk factors, epidemiology, pathophysiology, and combination therapy, including surgical, nonsurgical, and herbal alternatives, is provided in the first section of our review articles. Our research reveals that while non-pharmacological and natural supplements produce reasonable results but take some time to act and have no negative side effects, medication does offer some relief but does not, Completely heal the body. To comprehend how to treat Hashimoto's thyroiditis better, more randomised controlled research is required. We hope to conduct more study on Hashimoto's thyroiditis in the future. Future study involving counselling will be carried out in our country or state with the aid of our colleagues in order to assess patients' physical and mental health and provide more precise data on Hashimoto's thyroiditis and its improved therapy.

Acknowledgement

Authors would like to thank, Goel Institute of Pharmacy & Sciences (GIPS), Lucknow, Uttar Pradesh, India for extending their facilities.

Funding

No Funding

Conflict of Interest

The authors confirm that they have no known financial or personal conflicts of interest that would affect the research presented in this study.

Informed Consent

Using review articles, websites, and other sources for research content.

Ethical Statement

Don't evaluate each day by the harvest you bring in, but rather by the seeds you sow instead.

Author Contribution

Equitable contribution

Table.1: Current status of clinical trials on Thyroid diseases.

Drug	Mode of administra tion	Dis eas e	Enrollme nt	Allocation/Intervention model/Masking	Official Title of the study	Status	Clinica l trial	Year
Gasless BABA/ Classic BABA	Interventio nal	Thy roid	28	Randomized/ Parallel Assignment/ Triple (ParticipantInvestig atorOutcomes Assessor)	A Prospective, Randomized, and Controlled Study of the Safety and Efficacy in Gasless BABA(Bilateral Axillo-breast Approach) Robotic Thyroidectomy	NA	NCT03 92228 2	2019
determination of thyroid hormones and antibodies	Observation al	Thy roid	50	NA	Association of Oral Lichen Planus and Thyroid Disease	NA	NCT04 52307 7	2020
Dexamethaso ne/ NaCl 0.9%	Interventio nal	Thy roid	152	Randomized/ Parallel Assignment/Double (ParticipantInvestigator)	Preoperative Single- dose Steroid Application for the Treatment of Nausea and Vomiting After Thyroid Surge ry	Phase-	NCT01 18929 2	2015
Tums/ Calcitriol	Interventio nal	Thy roid	82	Randomized/ Parallel Assignment/ None (Open Label)	Does Preoperative Calcium and Calcitriol Decrease Rates of Post	NA	NCT03 86939 8	2019

					Thyroidectomy			
					Hypocalcemia.			
FNB/ Core biopsy	Interventio nal	Thy roid	60	Randomized/ Parallel Assignment/ Single (Participant)	Effectiveness of Core-Needle US Guided Biopsy as Primary Tool For Diagnosis of Thy roid Nodules, A Prospective Study	NA	NCT04 75905 3	2021
Non-narcotic group regimen/Narc otic group regimen	Interventio nal	Thy roid	126	Randomized/ Parallel Assignment/None (Open Label)	Are Narcotic Pain Medications Necessary Following Thyroidectomy and Parathyroidectomy	Phase-	NCT03 64024 7	2019
PIPC piperacillin sodium/ CEZ, cefazolin sodium	Interventio nal	Thy roid	2164	Randomized/ Parallel Assignment/Quadruple (Pa rticipantCareProviderInves tigatorOutcomes Assessor)	Antimicrobial Prophylaxis for the Prevention of Surgical Site Infection in Thyroid and Parathyroid Surgery	NA	NCT01 80585 6	2013
thyroidectomy	Interventio nal	Thy roid	122	Randomized/ Parallel Assignment/Quadruple (Pa rticipantCareProviderInves tigatorOutcomes Assessor)	Transection of Sternothyroid Muscle Increases the Rate of Exposure of the External Branch of the Superior Laryngeal Nerve During Thyroidectomy	NA	NCT05 42155 9	2022
TRH (Thyrotropin Releasing Hormone)	Interventio nal	Thy roid	96	N/A/ Single Group Assignment/None (Open Label)	Study of Thyrotropin Releasing Hormone in Patients With Thyroid or Pituitary Abnormalities	Phase-	NCT00 05475 6	2018
thyroid function tests	Observation al	Thy roid	62	NA	Ectopic Pregnancy and Thyroid Disord ers	NA	NCT05 44601 2	2022
NA	Observation al	Thy roid	05	NA	Early Detection of Autoimmune Thyroi d Heart Disease Via Urinary Exosomal Proteins.	NA	NCT03 98400 6	2021
NA	Observation al	Thy roid	2498	Ecologic or Community	Thyroid Disorders i n Malaysian: A Nationwide Multicentre Study	NA	NCT02 19021 4	2016
NA	Observation al	Thy roid	253	Other	Thyroid Disease in Pregnancy and Its Impact on the Quality of Life	NA	NCT04 16742 3	2022
NA	Observation al	Thy roid	50	Cohort	The Role of an Optical Probe in the Detection of Thyroid Cancer	NA	NCT01 79249 2	2016

	1				1	Т	1	
					and Normal Thyroid Tis sue in a Thyroidectomy Specimen: A Pilot Study			
NA	Observation al	Thy roid	23143	Cohort	Scientific Protocol for the Study of Thyroid Cancer and Other Thyroid Disea ses in Ukraine Following the Chernobyl Accident	NA	NCT00 34109 4	2020
Elastography	Interventio nal	Thy roid	188	N/A /Single Group Assignment/ None (Open Label)	The Role of Elastography in the Diagnosis of Thy roid Nodules	NA	NCT01 29204 4	2015
NA	Observation al	Thy roid	220	NA	Mohawk Culture, Behavior, Toxicant Exposure and Health	NA	NCT00 04323 8	2015
NA	Observation al	Thy roid	30	Case-Control	A Phase I Study of 99m Tc Pertechnetate Produced in High Energy Cyclotron (CYCLOTEC) in Patients With Thyroid Scan Indication	NA	NCT02 30717 5	2017
NA	Observation al	Thy roid	117	NA	Study to Improve Thyroid Do ses From Fallout Exposure in Kazakhstan	NA	NCT00 48042 8	2019
NA	Observation al	Thy roid	19456	Cohort	Scientific Protocol for the Study of Thyroid Cancer and Other Thyroid Disea se in Belarus Following the Chernobyl Accident	NA	NCT00 33971 6	2020
Decision Aid	Interventio nal	Thy roid	93	Randomized/Parallel Assignment/None (Open Label)	Shared Decision Making in Graves Disease - Graves Disease (GD) Choice	NA	NCT02 10779 4	2015
NA	Observation al	Thy roid	77	Cohort	NeoThyr - the Role of Mitochondria- dysfunction in Newborns of Mothers With Autoimmune Thyroi d Disease	NA	NCT02 06111 1	2023
Dexamethaso ne/ natriumchlori	Interventio nal	Thy roid	120	Randomized/Parallel Assignment/ Triple (ParticipantCarePro	Nausea and Pain Prophylaxis During Thyroid Surg	NA	NCT00 56992 0	2009

Srivastav, Y., et al., World J Curr Med Pharm Res. 2023; 5(5): 175-189

de 0,9%/				viderInvestigator)	ery, a Comparison of			
dexamethason				vider nivestigator j	Low-Dose and High-			
е					Dose			
					Dexamethasone to			
					Placebo			
thyroid USG					The Frequency		NICTIO 4	
was perform,	Observation	Thy	1.00	Case-Control	of Thyroid Diseases	NI A	NCT04	2020
blood samples	al	roid	160	Guse control	in Women With	NA	40677	2020
blood samples					Breast Cancer		9	
Thyroidectom					Bupivacaine			
y/Bupivacaine	Intomontio	The		Randomized/Parallel	Application Reduces		NCT02	
/ Saline	Interventio nal	Thy roid	91	Assignment/Double (Partic	Postthyroidectomy	NA	98109	2016
Solution	IIdI	Tolu		ipantInvestigator)	Pain: Cerrahpaşa		5	
					Experience			
					Association			
					Between Thyroid Fu			
					nction and Diabetes		NCT03	
no	Observation	Thy	260	Ecologic or Community	Complications in	NA	00133	2016
intervention	al	roid			Elderly Patients	1111	6	2010
					With Type 2			
					Diabetes Mellitus in			
					China			
					Impact of			
Levothyroxine					Treating Thyroid Ho			
LevotilyToxille		mı		Randomized/ Parallel	rmone Dysfunction		NCT00	
, Propylthioura	Interventio	Thy	4657	Assignment/Double (Partic	During Pregnancy: A	NA	84675	2011
cile	nal	roid		ipantInvestigator)	Randomized		5	
Circ					Controlled Trial of			
					Universal Screening			
					Versus Case Finding Harmonic FOCUS			
					Versus			
					Conventional			
					Technique in Total			
NT A	Observation	Thy		Case-Control	Thyroidectomy for		NCT00	
NA	al	roid	80	Case-Control	Benign Thyroid Dise	NA	66631	2008
					ase -A Prospective,		5	
					Comparative,			
					Multicenter,			
					Observational Study			
					Comparison of			
SPESS					Different Types of			
MEDICA S.r.l.					Electrostimulation		NCT03	
Via Buccari	Observation	Thy	20	Cohort	Probes for	NA	46091	2018
16153 Genova	al	roid	20		Intraoperative	14/4	2	2010
(GE), Italy					Nerve Monitoring			
					During			
					Thyroidectomy			
					Pharmacogenomic			
					Response to			
				NA	Thyrotropin-			
				IVA	Releasing Hormone		Nomes	
NA	Observation	Thy	0.0		Stimulation in		NCT00	001=
INA	al	roid	86		Healthy	NA	81214	2017
					Volunteers:The		9	
					Influence of a			
					Common Type 2			
					Deiodinase Genetic			
					Polymorphism on			

					Serum T3			
Liothyronine and Levothyroxine	Interventio nal	Thy roid	18	Randomized/Crossover Assignment/Triple (Partici pantCareProviderInvestiga tor)	Peripheral Thyroid Hormone Conversion and Glucose and Energy Metabolism	Phase-	NCT00 10611 9	2015
Harmonic Scalpel (Ethicon Endo-Surgery, USA)/Ligasur e Small Jaw (Covidien, USA)	Interventio nal	Thy	100	Randomized/ Parallel Assignment/Double (Partic ipantOutcomes Assessor)	Randomized Controlled Trial Comparing the Utility of an Ultrasonic Coagulating Device (UCSD) With Electrothermal Bipolar Vessel Sealer (EBVS) in Thyroid Surgery.	NA	NCT01 76568 6	2017
NA	Observation al	Thy roid	1200	NA	Development and Validation of a Thyroid-Specific Quality of Life Measure	NA	NCT00 15003 3	2008
Radioiodine	Observation al	Thy roid	12	Case-Control	Use of Low-dose Radioiodine for Ablation of Thyroid Remnant s in Patients With Graves' Disease Foll owing Thyroidectomy	NA	NCT03 11083 5	2017
endoscopic thyroidectomy	Observation al	Thy roid	300	Cohort	A Novel Technique for Endoscopic Transaxillary Thyroidectomy: a Preliminary Report and Comparison With the Open Procedure	NA	NCT05 73505 4	2023
serum sampling	Observation al	Thy roid	96	Cohort	AntithyroidaleAntik örperMit Oder OhneSubklinischeH ypothyreoseBei WeiblicherInfertilitä t in Der Schwangerschaft Und imWochenbett.	NA	NCT04 24927 1	2020
Hyalobarrier/ Guardix-SG	Interventio nal	Thy roid	198	Randomized/Parallel Assignment/Double (Partic ipant Outcomes Assessor)	Prospective, Randomized, Double Blind, Multicenter Study for Hyalobarrier ® to Evaluate Antiadhesive Effect and Safety Compared to Guardix-SG® After Thyroidectomy	Phase-	NCT01 69630 5	2014
NIRF imaging in thyroid	Interventio nal	Thy roid	30	N/A /Single Group Assignment/ None (Open	The Use of Near- Infrared Fluorescence	NA	NCT03 01243 8	2018

surgery				Label)	Imaging in			
					Parathyroid			
					Visualization			
					During Thyroid Surg			
					ery: a Pilot Study			
					A Prospective			
					Evaluation of the			
					Feasibility and			
Transoral					Safety of the			
endoscopic				N/A/ Single Group	Transoral		NCT03	
thyroidectomy	Interventio	Thy	10	Assignment/None (Open	Endoscopic	NA	15896	2021
vestibular	nal	roid		Label)	Thyroidectomy		1	
approach					Vestibular Approach			
					(TOETVA) as a			
					Treatment for			
					Benign Thyroid Nod			
					ules			
					Platysma Trial - a Randomized			
					Controlled Trial of			
platysma				Randomized/ Parallel	Platysma Suturing		NCT02	
suture/ no	Interventio	Thy	80	Assignment/Double (Partic	Versus no Sutures	NA	95100	2017
platysma	nal	roid	00	ipant Outcomes Assessor)	for Wound Closure	1471	0	201/
suture					After			
					Primary Thyroid Su			
					rgery			
					Influence of Factors			
					Specific to Patient,		Nomes	
Thyroid	Observation	Thy	0500	Cohort	Procedure or		NCT02	2044
surgery	al	roid	3500	Golloit	Surgeon	NA	81373	2016
					on Thyroid Surgery		3	
					Outcomes	<u> </u>		
					The Impact of			
Thomastate					COVID-19 Pandemic		NCT04	
Thyroidectom	Observation	Thy	3800	Case-Control	on Thyroid Surgery	NA	63581	2020
У	al	roid	3000		in Italy: Results		3	-020
					From a Nation-wide			
					Multicentric Study			
					Randomized			
	Intour	T1		Randomized /Parallel	Controlled Trial of	Dhara	NCT04	
Prednisone	Interventio	Thy	30	Assignment/ None (Open	Preoperative Steroids in	Phase-	54227	2022
	nal	roid		Label)	Autoimmune Thyroi	4	8	
					d Disease			
							NCT00	
NA	Observation	Thy	1000	NA	Thyroid Disease Ser	NA	59260	2017
	al	roid	1000		um Repository	1471	5	201/
					Can Thyroid Levels			
					Affect Topographic,		NCT04	
NA	Observation	Thy	60	Case-Control	Densitometric and	NA	75296	2021
	al	roid			Aberrometric		9	
					Values of the Cornea			
					Feasibility and			
					Complications After			
	Obganis	Th			Transoral		NCT05	
Toetva	Observation al	Thy roid	18	Case-Only	Endoscopic	NA	39670	2023
	aı	1010			Thyroidectomy Via		3	
					Vestibular Approach			
					(TOETVA) - a			
		_	•	[102]			C LICA). V	

					Single-Center First Experience Case Series and Systematic Review A Pivotal Phase III Study of Cyclotron- produced Tc-99m			
CTC/ G-PERT	Interventio nal	Thy roid	25	N/A/Single Group Assignment/None (Open Label)	Pertechnetate (CTC) Compared to Generator-produced Tc-99m Pertechnetate (G- PERT) in Subjects With Thyroid Disor ders	Phase-	NCT02 98067 9	2022

Bibliography

- 1. Invernizzi P, Gershwin ME. The genetics of human autoimmune disease. J Autoimmun [Internet]. 2009;33(3-4):290-9. Available from: http://dx.doi.org/10.1016/j.jaut.2009.07.008
- 2. Kawicka A, Regulska-Ilow B. Metabolic disorders and nutritional status in autoimmune thyroid diseases. Postepy Hig Med Dosw. 2015;69:80–90.
- 3. Borah K, Tiwari A, Chandrul DKK. Review on Miracle of Herbals in Treatment and Regulation of Thyroid. Int J Trend Sci Res Dev. 2019;Volume-3(Issue-4):368–72.
- 4. Soon TK, Ting PW. Thyroid Diseases and Diet Control. J Nutr Disord Ther. 2018;08(01).
- 5. Jonklaas J, Bianco AC, Bauer AJ, Burman KD, Cappola AR, Celi FS, et al. Guidelines for the treatment of hypothyroidism: Prepared by the American thyroid association task force on thyroid hormone replacement. Thyroid. 2014;24(12):1670–751.
- 6. Samuchiwal SK. Autoimmune diseases: backfiring of an otherwise unerring defense. 2018;6(6):251–2.
- 7. Shoenfeld Y, Zandman-Goddard G, Stojanovich L,
 - Cutolo M, Amital H, Levy Y, et al. The mosaic of autoimmunity: Hormonal and environmental factors involved in autoimmune diseases 2008. Isr Med Assoc I. 2008;10(1):8–12.
- 8. Kahaly GJ, Grebe SKG, Lupo MA, McDonald N, Sipos JA. Graves' disease: Diagnostic and therapeutic challenges (multimedia activity). Am J Med [Internet]. 2011;124(6):S2–3. Available from: http://dx.doi.org/10.1016/j.amjmed.2011.03.001
- 9. Merrill SJ, Mu Y. Thyroid autoimmunity as a window to autoimmunity: An explanation for sex differences in the prevalence of thyroid autoimmunity. J Theor Biol. 2015;375:95–100.
- Bjoro T, Holmen J, Kruger O, Midthjell K, Hunstad K, Schreiner T, et al. Prevalence of thyroid disease, thyroid dysfunction and thyroid peroxidase antibodies in a large, unselected population. The health study of Nord-Trondelag (HUNT). Eur J Endocrinol. 2000;143(5):639–47.
- 11. Hashimoto H. Hashimotoâ s Thyroiditis. Epidemiology.

- 2016;(June 2014):1-4.
- 12. Pyzik A, Grywalska E, Matyjaszek-Matuszek B, Roliński J. Immune disorders in Hashimoto's thyroiditis: What do we know so far? J Immunol Res. 2015;2015.
- 13. Schreiber FS, Ziob T, Vieth M, Elsbernd H. Atypische Sprue bei einem Patienten mit Diabetes mellitus Typ 1 und Hashimoto-Thyreoiditis. Dtsch Medizinische Wochenschrift. 2011;136(3):82–5.
- 14. Rugge JB, Bougatsos C, Chou R. Screening and treatment of thyroid dysfunction: An evidence review for the U.S. preventive services task force. Ann Intern Med. 2015;162(1):35–45.
- 15. Gianfranco TR, Camila AA, Pilar HJ, Alejandro DF, Daniela AS. Development of nephrotic syndrome in a patient with Hashimoto's Thyroiditis. Andes Pediatr. 2022;93(4):574–8.
- 16. Brent, Gregory A., and Anthony P. Weetman. "Hypothyroidism and thyroiditis." Williams textbook of endocrinology . Elsevier, 2016. 416-448. 2016;2016.
- 17. Kasagi K, Kousaka T, Higuchi K, Iida Y, Misaki T, Alam MS, et al. Clinical significance of measurements of antithyroid antibodies in the diagnosis of Hashimoto's thyroiditis: Comparison with histological findings. Thyroid. 1996;6(5):445–50.
- 18. Bello F. Hypothyroidism in adults: A review and recent advances in management. J Diabetes Endocrinol. 2012;3(5):57–69.
- 19. Fisher DA, Oddie TH, Johnson DE, Nelson JC. The Diagnosis of Hashimoto's Thyroiditis. 2015;(May).
- 20. Saikia UK, Saikia M. Drug-induced thyroid disorders. J Indian Med Assoc [Internet]. 2006 Oct;104(10):583, 585—7, 600. Available from: http://europepmc.org/abstract/MED/17380824
- 21. Tagoe CE, Sheth T, Golub E, Sorensen K. Rheumatic associations of autoimmune thyroid disease: a systematic review. Clin Rheumatol. 2019;
- 22. Al-sofy RA, Hussein TA, Brakhas SA. Estimation of Free T3, free T4 and TSH Levels in a Sample of Iraqi Autoimmune Urticarial Patients. 2022;21(2):688–92.
- Mori K, Yoshida K. Viral infection in induction of Hashimoto's thyroiditis: A key player or just a bystander? Curr Opin Endocrinol Diabetes Obes.

- 2010;17(5):418-24.
- 24. Wiersinga WM. Clinical relevance of environmental factors in the pathogenesis of autoimmune thyroid disease. Endocrinol Metab. 2016;31(2):213–22.
- 25. Eschler DC, Hasham A, Tomer Y. Cutting edge: The etiology of autoimmune thyroid diseases. Clin Rev Allergy Immunol. 2011;41(2):190–7.
- 26. Li D, Cai W, Gu R, Zhang Y, Zhang H, Tang K, et al. Th17 cell plays a role in the pathogenesis of Hashimoto's thyroiditis in patients. Clin Immunol. 2013;149(3 PB):411–20.
- Song H, Fang F, Tomasson G, Arnberg FK, Mataix-Cols D, De La Cruz LF, et al. Association of stress-related disorders with subsequent autoimmune disease. JAMA J Am Med Assoc. 2018;319(23):2388-400.
- 28. Champion BR, Page KR, Parish N, Rayner DC, Dawe K, Biswas-Hughes G, et al. identification of a thyroxine-containing self-epitope of thyroglobulin which triggers thyroid autoreactive T cells. J Exp Med. 1991;174(2):363–70.
- 29. Amano T, Fujio H. Antigenic determinants of lysozyme. Tanpakushitsu Kakusan Koso. 1968;13(2):129–36.
- 30. Mikosch P, Aistleitner A, Oehrlein M, Trifina-Mikosch E. Hashimoto's thyroiditis and coexisting disorders in correlation with HLA status—an overview. Wiener Medizinische Wochenschrift. 2023;173(1–2):41–53.
- 31. Brix TH, Hegedüs L, Gardas A, Banga JP, Nielsen CH. Monozygotic twin pairs discordant for Hashimoto's thyroiditis share a high proportion of thyroid peroxidase autoantibodies to the immunodominant region A. Further evidence for genetic transmission of epitopic "fingerprints." Autoimmunity. 2011;44(3):188–94.
- 32. Unnikrishnan A, Menon U. Thyroid disorders in India: An epidemiological perspective. Indian J Endocrinol Metab. 2011;15(6):78.
- 33. Bagcchi S. Hypothyroidism in India: More to be done.
 Lancet Diabetes Endocrinol [Internet].
 2014;2(10):778. Available from:
 http://dx.doi.org/10.1016/S2213-8587(14)70208-6
- 34. Murphy ED, Roths JB. A y chromosome associated factor in strain bxsb producing accelerated autoimmunity and lymphoproliferation. Arthritis Rheum. 1979;22(11):1188–94.
- 35. Pierdominici M, Maselli A, Colasanti T, Giammarioli AM, Delunardo F, Vacirca D, et al. Estrogen receptor profiles in human peripheral blood lymphocytes. Immunol Lett [Internet]. 2010;132(1–2):79–85. Available from: http://dx.doi.org/10.1016/j.imlet.2010.06.003
- CN, STEEM et al. "Gender Differences in Autoimmune Diseases.
- 37. Selmi C, Brunetta E, Raimondo MG, Meroni PL. The X chromosome and the sex ratio of autoimmunity. Autoimmun Rev [Internet]. 2012;11(6–7):A531–7. Available from: http://dx.doi.org/10.1016/j.autrev.2011.11.024
- 38. Shelly S, Boaz M, Orbach H. Prolactin and autoimmunity. Autoimmun Rev [Internet]. 2012;11(6–

- 7). Available from: http://dx.doi.org/10.1016/j.autrev.2011.11.009
- 39. Tsatsoulis A. The role of stress in the clinical expression of thyroid autoimmunity. Ann N Y Acad Sci. 2006;1088:382–95.
- 40. Blum, Susan. The Immune System Recovery Plan: A Doctor's 4-step Program to Treat Autoimmune Disease . Simon and Schuster, 2013. 2013;2013.
- 41. Becker KL, Ferguson RH, McConahey WM. The Connective-Tissue Diseases and Symptoms Associated with Hashimoto's Thyroiditis. N Engl J Med [Internet]. 1963;268(6):277–80. Available from: https://doi.org/10.1056/NEJM196302072680601
- 42. Baker BA, Gharib H, Markowitz H. Correlation of thyroid antibodies and cytologic features in suspected autoimmune thyroid disease. Am J Med. 1983;74(6):941–4.
- 43. Neupane N, Kaur M, Prabhakar PK. Treatment of Hashimoto's thyroiditis with herbal medication. Int J Green Pharm. 2017;11(3):S343-7.
- 44. Hall RCW, Popkin MK, Devaul R, Hall AK, Gardner ER, Beresford TP. Psychiatric manifestations of Hashimoto's thyroiditis. Psychosomatics [Internet]. 1982;23(4):337–42. Available from: http://dx.doi.org/10.1016/S0033-3182(82)73397-3
- 45. Piechaczyk M, Pau B, Kazatchkineo MD. specificity of anti-thyroglobulin autoantibodies in. 1991;811–4.
- 46. Martin A, Davies TF. T cells and human autoimmune thyroid disease: Emerging data show lack of need to invoke suppressor T cell problems. Thyroid. 1992;2(3):247–61.
- 47. Giordano C, Richiusa P, Bagnasco M, Pizzolanti G, Di Blasi F, Sbriglia MS, et al. Differential regulation of Fasmediated apoptosis in both thyrocyte and lymphocyte cellular compartments correlates with opposite phenotypic manifestations of autoimmune thyroid disease. Thyroid. 2001;11(3):233–44.
- 48. Lumachi F, Basso S. Apoptosis: Life through planned cellular death regulating mechanisms, control systems, and relations with thyroid diseases. Thyroid. 2002;12(1):27–34.
- 49. Lorini R, Gastaldi R, Traggiai C, Perucchin PP, Sack J, Laron Z. Hashimoto's thyroiditis. Pediatr Endocrinol Rev. 2003;1(SUPLL. 2):205–11.
- 50. Kumar N, Ray C, Jain S. Aspiration cytology of Hashimoto's thyroiditis in an endemic area. Cytopathology. 2002;13(1):31–9.
- 51. Yoshida H, Amino N, Yagawa K, Uemura K, Satoh M, Miyai K, et al. Association of serum antithyroid antibodies with lymphocytic infiltration of the thyroid gland: Studies of seventy autopsied cases. J Clin Endocrinol Metab. 1978;46(6):859–62.
- 52. Ren Y, Kyriazidis N, Faquin WC, Soylu S, Kamani D, Saade R, et al. The Presence of Hürthle Cells Does Not Increase the Risk of Malignancy in Most Bethesda Categories in Thyroid Fine-Needle Aspirates. Thyroid. 2020;30(3):425–31.
- 53. Cannon J. The Significance of Hürthle Cells in Thyroid Disease. Oncologist. 2011;16(10):1380–7.

- 54. Iodine R. Radioactive Iodine Uptake in Hashimoto 's Thyroiditis. 2015;
- 55. Parvathaneni, Arvin, Daniel Fischman, and Pramil Cheriyath. "Hashimoto's thyroiditis." A New Look at Hypothyroidism. IntechOpen, 2012. 2012;2012.
- 56. Li Y, Bai Y, Liu Z, Ozaki T, Taniguchi E, Mori I, et al. Immunohistochemistry of IgG4 can help subclassify Hashimoto's autoimmune thyroiditis. Pathol Int. 2009;59(9):636–41.
- 57. Mizokami T, Li AW, El-Kaissi S, Wall JR. Stress and thyroid autoimmunity. Thyroid. 2004;14(12):1047–55.
- 58. Ds C. Antithyroid drugs.
- 59. Moon JH, Yi KH. The Diagnosis and Management of Hyperthyroidism in Korea: Consensus Report of the Korean Thyroid Association. Endocrinol Metab. 2013;28(4):275.
- 60. Intidhar LS, Chaabouni AM, Kralem T, Attia N, Gritli S, et al. (2006) Hyroid carcinoma and Hashimoto thyroiditis. Ann Otolaryngol Chir Cerviofac 123: 175-178. 2006;2006.
- 61. Baron-Faust, R BJ. He autoimmune connection. New York McGraw-Hill.
- 62. Nazarpour S, Ramezani Tehrani F, Simbar M, Azizi F. Thyroid autoantibodies and the effect on pregnancy outcomes. J Obstet Gynaecol (Lahore) [Internet]. 2016;36(1):3–9. Available from: http://dx.doi.org/10.3109/01443615.2014.968110
- 63. Myers DA. The Autoimmune Solution: Prevent and Reverse the Full Spectrum of Inflammatory Symptoms and Diseases. 2015;400. Available from: https://books.google.com/books/about/The_Autoimmune_Solution.html?id=OvAYBAAAQBAJ&pgis=1
- 64. Vita R, Saraceno G, Trimarchi F, Benvenga S. A novel formulation of l-thyroxine (l-T4) reduces the problem of l-T4 malabsorption by coffee observed with traditional tablet formulations. Endocrine. 2013;43(1):154–60.
- 65. Colucci P, Yue CS, Ducharme M, Benvenga S. A review of the pharmacokinetics of levothyroxine for the treatment of hypothyroidism. Eur Endocrinol. 2013;9(1):40–7.
- 66. Samuchiwal, S. K. "Autoimmune disease: backfiring of an otherwise unerring defence." MOJ Autoimmune Disease 2.00008 (2017). 2017;00008:2017.
- 67. Ballantyne, Sarah. The Paleo approach: reverse autoimmune disease and heal your body . Victory Belt Publishing, 2014. 2014;2014.
- 68. Jabri B, Kasarda DD, Green PHR. Innate and adaptive immunity: The Yin and Yang of celiac disease. Immunol Rev. 2005;206:219–31.
- 69. Thomas CM, Versalovic J. Probiotics-host communication modulation of signaling pathways in the intestine. Gut Microbes. 2010;1(3):1–16.
- 70. Lee BJ, Bak YT. Irritable bowel syndrome, gut microbiota and probiotics. J Neurogastroenterol Motil. 2011;17(3):252–66.
- 71. Pflughoei K, Versalovic J (2012) Human microbiome in health and disease. Annual Reviews Pathology 7: 99-122. 2012;2012.

- 72. Fasano A. Leaky gut and autoimmune diseases. Clin Rev Allergy Immunol. 2012;42(1):71–8.
- 73. Bron PA, Van Baarlen P, Kleerebezem M. Emerging molecular insights into the interaction between probiotics and the host intestinal mucosa. Nat Rev Microbiol [Internet]. 2012;10(1):66–78. Available from: http://dx.doi.org/10.1038/nrmicro2690
- 74. IJsselmuiden CB, Faden RR. The New England Journal of Medicine Downloaded from nejm.org on January 31, 2011. For personal use only. No other uses without permission. Copyright © 1992 Massachusetts Medical Society. All rights reserved. 1992;326.
- 75. Stansbury J, Saunders P, Winston D. Promoting Healthy Thyroid Function with Iodine, Bladderwrack, Guggul and Iris. J Restor Med. 2013;1(1):83–90.
- 76. Wu J, Xia C, Meier J, Li S, Hu X, Lala DS. The hypolipidemic natural product guggulsterone acts as an antagonist of the bile acid receptor. Mol Endocrinol. 2002;16(7):1590–7.
- 77. Panda S, Kar A. Gugulu (Commiphora mukul) induces triiodothyronine production: Possible involvement of lipid peroxidation. Life Sci. 1999;65(12):137–41.
- 78. Develhar, M., Y. H. Ousman and KDB. "Hypothyroism." Endocrinol Metab Clin North Am 363 595-615. 2007;вы12у(235):245.
- 79. Noge K, Becerra JX. Germacrene D, A common sesquiterpene in the genus Bursera (Burseraceae). Molecules. 2009;14(12):5289–97.
- 80. Yan X, Chuda Y, Suzuki M, Nagata T. Fucoxanthin as the major antioxidant in hijikia fusiformis, a common edible seaweed. Biosci Biotechnol Biochem. 1999;63(3):605–7.
- 81. Jiménez-Escrig A, Jiménez-Jiménez I, Pulido R, Saura-Calixto F. Antioxidant activity of fresh and processed edible seaweeds. J Sci Food Agric. 2001;81(5):530–4.
- 82. Tripathi, Yamini B., O. P. Malhotra and SNT. "Thyroid stimulating action of Z-guggulsterone obtained from Commiphora mukul." Planta medica 5001 (1984): 78-80. 1984;13(3):576.