Advancements in Drug Delivery Methods for the Treatment of Brain Disease
Abstract
The blood-brain barrier (BBB) has been a great obstacle for brain drug delivery. The BBB in healthy brain is a dispersal barrier essential for protecting normal brain function by impeding most compounds from transiting from the blood to the brain; only small molecules can cross the BBB. Under firm pathological conditions of diseases such as stroke, diabetes, seizures, multiple sclerosis, Parkinson’s disease and Alzheimer disease. There are three types of barrier present in central nervous system such as Blood Brain Barrier, Blood Cerebra-Spinal Fluid Barrier, and Blood– Arachnoid Barrier. Alzheimer disease, Parkinson’s disease, epilepsy, psychiatric disorders or neurodegenerative diseases, different types of drugs are available. But they have some lacuna for transportation of drug though these barriers and reaching drug to the target site. As an importance, several strategies are currently being sought after to enhance the delivery of drugs across the BBB.
Keywords:
Blood-brain barrier, Parkinson’s disease, Alzheimer’s disease, psychiatric disorders, multiple sclerosis, pathological conditions, stroke, diabetes, seizuresDOI
https://doi.org/10.37022/wjcmpr.v7i2.356References
https://doi.org/10.1016/j.bbamem.2008.09.016
2. Gindi S, Methra T, Chandu BR, Boyina R, Dasari V. Antiurolithiatic and invitro anti-oxidant activity of leaves of Ageratum conyzoides in rat. World J. Pharm. Pharm. Sci. 2013 Feb 8;2:636-49.https://doi.org/10.1016/j.addr.2008.09.009
3. Turner JR. Intestinal mucosal barrier function in health and disease. Nature reviews immunology. 2009 Nov;9(11):799-809.
https://doi.org/10.1038/nri2653
4. Kiranmai M, Renuka P, Brahmaiah B, Chandu BR. Vitamin D as a promising anticancer agent.
https://doi.org/10.1017/s0317167100015547
5. Vijayalakshmi P, Girish C, Mentham R, Rao CB, Nama S. A REVIEW ON ALZHEIMER’S DISEASE. International journal of pharma and biosciences. IJPBS. 2014 Apr;4(2):19-27.
https://www.ijpbs.com/ijpbsadmin/upload/ijpbs_536f304fa5e38.pdf
6. Pardridge WM. Drug transport across the blood–brain barrier. Journal of cerebral blood flow & metabolism. 2012 Nov;32(11):1959-72.
https://doi.org/10.1038/jcbfm.2012.126
7. Małkiewicz MA, Szarmach A, Sabisz A, Cubała WJ, Szurowska E, Winklewski PJ. Blood-brain barrier permeability and physical exercise. Journal of neuroinflammation. 2019 Dec;16:1-6. https://doi.org/10.1186/s12974-019-1403-x
8. Bors LA, Erdő F. Overcoming the blood–brain barrier. challenges and tricks for CNS drug delivery.ScientiaPharmaceutica. 2019;87(1):6.
https://doi.org/10.3390/scipharm87010006
9. Pulgar VM. Transcytosis to cross the blood brain barrier, new advancements and challenges. Frontiers in neuroscience. 2019 Jan 11;12:1019. https://doi.org/10.3389/fnins.2018.01019
10. Nama S, Chandu BR, Awen BZ, Khagga M. Development and validation of a new RP-HPLC method for the determination of aprepitant in solid dosage forms. Tropical Journal of Pharmaceutical Research. 2011;10(4):491-7.
https://doi.org/10.7150/thno.21254
11. Hollon T. Researchers and regulators reflect on first gene therapy death. Nature medicine. 2000 Jan 1;6(1):6-7.
https://doi.org/10.1016/s0002-9394(00)00442-6
12. Masserini M. Nanoparticles for brain drug delivery. International Scholarly Research Notices. 2013;2013(1):238428. https://doi.org/10.1155/2013/238428
13. Hwisa NT, Gindi S, Rao CB, Katakam P, Rao Chandu B. Evaluation of Antiulcer Activity of Picrasma Quassioides Bennett Aqueous Extract in Rodents. Vedic Res. Int. Phytomedicine. 2013;1:27.
https://doi.org/10.1146/annurev-bioeng-071910-124709
14. Peura L, Malmioja K, Huttunen K, Leppänen J, Hämäläinen M, Forsberg MM, Rautio J, Laine K. Design, synthesis and brain uptake of LAT1-targeted amino acid prodrugs of dopamine. Pharmaceutical research. 2013 Oct;30:2523-37.
https://doi.org/10.1007/s11095-012-0966-3
15. Komarova YA, Kruse K, Mehta D, Malik AB. Protein interactions at endothelial junctions and signaling mechanisms regulating endothelial permeability. Circulation research. 2017 Jan 6;120(1):179-206.
https://doi.org/10.1161/circresaha.116.306534
16. Abrahamov D, Levran O, Naparstek S, Refaeli Y, Kaptson S, Salah MA, Ishai Y, Sahar G. Blood–brain barrier disruption after cardiopulmonary bypass: diagnosis and correlation to cognition. The Annals of Thoracic Surgery. 2017 Jul 1;104(1):161-9.
https://doi.org/10.1016/j.athoracsur.2016.10.043
17. Burle, G. S., Kakullamarri, P. R., Kothamasu, S. B., Kallam, S. D. M., & Bodapati, A. (2024). Case Study on Regulatory Approaches for New Degradation Impurity Exceeding ICH Thresholds in Solubilized Ibuprofen Capsules During Stability Testing. Journal of International Research in Medical and Pharmaceutical Sciences, 19(3), 70–82. https://doi.org/10.56557/jirmeps/2024/v19i38936
18. Sheikov N, McDannold N, Sharma S, Hynynen K. Effect of focused ultrasound applied with an ultrasound contrast agent on the tight junctional integrity of the brain microvascular endothelium. Ultrasound in medicine & biology. 2008 Jul 1;34(7):1093-104.
https://doi.org/10.1016/j.ultrasmedbio.2007.12.015
19. Park J, Aryal M, Vykhodtseva N, Zhang YZ, McDannold N. Evaluation of permeability, doxorubicin delivery, and drug retention in a rat brain tumor model after ultrasound-induced blood-tumor barrier disruption. Journal of Controlled Release. 2017 Mar 28;250:77-85.
https://doi.org/10.1016/j.jconrel.2016.10.011
20. Yang J, Li Q, Wang Z, Qi C, Han X, Lan X, Wan J, Wang W, Zhao X, Hou Z, Gao C. Multimodality MRI assessment of grey and white matter injury and blood-brain barrier disruption after intracerebral haemorrhage in mice. Scientific reports. 2017 Jan 13;7(1):40358.
https://doi.org/10.1038/srep40358
21. Rosenberg GA. Neurological diseases in relation to the blood–brain barrier. Journal of Cerebral Blood Flow & Metabolism. 2012 Jul;32(7):1139-51.
https://doi.org/10.1038/jcbfm.2011.197
22. Shiraishi K, Kawano K, Minowa T, Maitani Y, Yokoyama M. Preparation and in vivo imaging of PEG-poly (L-lysine)-based polymeric micelle MRI contrast agents. Journal of Controlled Release. 2009 May 21;136(1):14-20.
https://doi.org/10.1016/j.jconrel.2009.01.010
23. Buga AM, Sascau M, Pisoschi C, Herndon JG, Kessler C, Popa‐Wagner A. The genomic response of the ipsilateral and contralateral cortex to stroke in aged rats. Journal of Cellular and Molecular Medicine. 2008 Dec 2;12(6b):2731-53.
https://doi.org/10.1111/j.1582-4934.2008.00252.x
24. Lewis DK, Thomas KT, Selvamani A, Sohrabji F. Age-related severity of focal ischemia in female rats is associated with impaired astrocyte function. Neurobiology of aging. 2012 Jun 1;33(6):1123-e1.
https://doi.org/10.1016/j.neurobiolaging.2011.11.007
25. Zhou W, Zhang J, Wang G, Ling L, Yan C. Permeability and distribution of nerve growth factor in the brain of neonatal rats by periphery venous injection in hypoxic-ischemic state. Springerplus. 2016 Dec;5:1-9.
https://doi.org/10.1186/s40064-016-3594-2
Published


How to Cite
Issue
Section

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.