A review on nanomaterials for cartilage repair: innovations in scaffold design and drug delivery
Abstract
Cartilage damage and osteoarthritis remain major clinical challenges due to the tissue’s poor self-healing capacity and limited regenerative potential. Conventional treatments fail to restore native function, underscoring the need for advanced therapeutic strategies. Nanomaterials have emerged as promising candidates for cartilage repair because of their ability to mimic the extracellular matrix, provide structural support, and enable targeted drug delivery. This review highlights recent innovations in nanomaterial-based scaffolds and drug delivery systems for cartilage regeneration. Nanofibers and nanoscaffolds reproduce the fibrous structure of cartilage, while nanoparticles enable controlled release of growth factors, anti-inflammatory drugs, and genetic material. Hydrogels reinforced with nanomaterials offer injectable, bioactive environments, and nanocomposites provide mechanical stability alongside bioactivity. Advances in scaffold design, including biomimetic architectures, biofunctionalization, and 3D bioprinting, are enhancing integration and functional outcomes. Preclinical studies have demonstrated encouraging results in vitro and in vivo, while early clinical trials indicate translational potential. Future perspectives include the development of personalized 3D-printed scaffolds, multifunctional smart nanomaterials, and integration with regenerative medicine approaches. Collectively, nanotechnology represents a transformative platform for durable and functional cartilage repair.
Keywords:
Nanomaterials, Cartilage repair, Nanoscaffolds, Drug delivery, Osteoarthritis, Tissue engineeringDOI
https://doi.org/10.37022/wjcmpr.v7i3.373References
1. Sophia Fox AJ, Bedi A, Rodeo SA. The basic science of articular cartilage: structure, composition, and function. Sports Health. 2009 Nov;1(6):461–8.
2. Huey DJ, Hu JC, Athanasiou KA. Unlike bone, cartilage regeneration remains elusive. Science. 2012 Nov 23;338(6109):917–21.
3. Goldring MB, Goldring SR. Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis. Ann N Y Acad Sci. 2010 Mar;1192:230–7.
4. Makris EA, Gomoll AH, Malizos KN, Hu JC, Athanasiou KA. Repair and tissue engineering techniques for articular cartilage. Nat Rev Rheumatol. 2015 Jan;11(1):21–34.
5. Benders KE, van Weeren PR, Badylak SF, Saris DB, Dhert WJ, Malda J. Extracellular matrix scaffolds for cartilage and bone regeneration. Trends Biotechnol. 2013 Mar;31(3):169–76.
6. Chawla S, Kumar A, Admane P, Kumar V, Sharma A, Jaiswal AK, et al. Scaffold-based approaches for cartilage tissue engineering: current status and future directions. Biomed Mater. 2020 Apr 20;15(4):042001.
7. Irawan V, Sung TC, Higuchi A, Ikoma T. Collagen scaffolds in cartilage tissue engineering and relevant approaches for future development. Tissue Eng Regen Med. 2018 Oct;15(5):673–97.
8. Gong T, Xie J, Liao J, Zhang T, Lin S, Lin Y. Nanomaterials and bone regeneration. Bone Res. 2015;3:15029.
9. Sophia Fox AJ, Bedi A, Rodeo SA. The basic science of articular cartilage: structure, composition, and function. Sports Health. 2009 Nov;1(6):461–8.
10. Huey DJ, Hu JC, Athanasiou KA. Unlike bone, cartilage regeneration remains elusive. Science. 2012 Nov 23;338(6109):917–21.
11. Goldring MB, Goldring SR. Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis. Ann N Y Acad Sci. 2010 Mar;1192:230–7.
12. Makris EA, Gomoll AH, Malizos KN, Hu JC, Athanasiou KA. Repair and tissue engineering techniques for articular cartilage. Nat Rev Rheumatol. 2015 Jan;11(1):21–34.
13. Benders KE, van Weeren PR, Badylak SF, Saris DB, Dhert WJ, Malda J. Extracellular matrix scaffolds for cartilage and bone regeneration. Trends Biotechnol. 2013 Mar;31(3):169–76.
14. Chawla S, Kumar A, Admane P, Kumar V, Sharma A, Jaiswal AK, et al. Scaffold-based approaches for cartilage tissue engineering: current status and future directions. Biomed Mater. 2020 Apr 20;15(4):042001. .
15. Irawan V, Sung TC, Higuchi A, Ikoma T. Collagen scaffolds in cartilage tissue engineering and relevant approaches for future development. Tissue Eng Regen Med. 2018 Oct;15(5):673–97.
16. Gong T, Xie J, Liao J, Zhang T, Lin S, Lin Y. Nanomaterials and bone regeneration. Bone Res. 2015;3:15029.
17. Li WJ, Tuli R, Huang X, Laquerriere P, Tuan RS. Multilineage differentiation of human mesenchymal stem cells in a three-dimensional nanofibrous scaffold. Biomaterials. 2005 Apr;26(25):5158–66.
18. Bhardwaj N, Kundu SC. Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv. 2010 May-Jun;28(3):325–47. doi:10.1016/j.biotechadv.2010.01.004.
19. Makadia HK, Siegel SJ. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers (Basel). 2011;3(3):1377–97.
20. Zhang X, Reagan MR, Kaplan DL. Electrospun silk biomaterials for regenerative medicine. Adv Drug Deliv Rev. 2009 Nov;61(12):988–1006.
21. Gong T, Xie J, Liao J, Zhang T, Lin S, Lin Y. Nanomaterials and bone regeneration. Bone Res. 2015;3:15029.
22. Oliveira JT, Gardel LS, Rada T, Martins L, Gomes ME, Reis RL. Injectable gellan gum hydrogels with autologous cells for the treatment of cartilage defects in a rabbit model. Tissue Eng Part A. 2010 Sep;16(4):1091–101.
23. Basha RY, Doble M. Design of biocomposite materials for bone tissue regeneration. Mater Sci Eng C Mater Biol Appl. 2015 Mar;57:452–63. doi:10.1016/j.msec.2015.07.081.
24. Irawan V, Sung TC, Higuchi A, Ikoma T. Collagen scaffolds in cartilage tissue engineering and relevant approaches for future development. Tissue Eng Regen Med. 2018 Oct;15(5):673–97.
25. Qi Y, Zhao T, Yan W, Xu K, Shi Z, Wang J, et al. Biomaterials for the delivery of growth factors and drugs in cartilage tissue engineering. J Control Release. 2019;317:242–56. doi:10.1016/j.jconrel.2019.11.006.
26. Makadia HK, Siegel SJ. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers (Basel). 2011;3(3):1377–97.
27. Bhardwaj U, Burgess DJ. A novel NF-kappaB inhibitor for treatment of inflammatory diseases. J Control Release. 2010;148(1):8–16.
28. Yan C, Zhang R, Gong W, Yin F, Wang H, Chen Y, et al. Curcumin-loaded liposomes suppress inflammation and apoptosis in chondrocytes to protect against osteoarthritis. J Nanobiotechnology. 2022;20:35.
29. Hu S, Chen X, Liang Y, Guo C, Yin Z, Luo Y, et al. Indomethacin-loaded chitosan nanoparticles enhance anti-inflammatory efficacy in osteoarthritis models. Int J Pharm. 2019;558:19–28.
30. Sharma A, Kaur K, Arora A, Tiwari A. Gene delivery systems for cartilage regeneration: current strategies and future directions. Mol Pharm. 2021;18(7):2488–2505.
31. Chen FH, Rousche KT, Tuan RS. Technology Insight: adult stem cells in cartilage regeneration and tissue engineering. Nat Clin PractRheumatol. 2006;2(7):373–82.
32. Wang X, Wang Y, Gou W, Lu Q, Peng J, Lu S. Role of mesenchymal stem cells in cartilage regeneration and bone repair. Stem Cells Int. 2017;2017:8835129.
33. Yan LP, Silva-Correia J, Oliveira MB, Vilela C, Pereira H, Sousa RA, et al. Bilayered silk/silk-nanoCaP scaffolds for osteochondral tissue engineering: in vitro and in vivo assessment. Acta Biomater. 2015;12:227–41.
34. Zhang S, Chuah SJ, Lai RC, Hui JHP, Lim SK, Toh WS. MSC exosomes mediate cartilage repair by enhancing proliferation, attenuating apoptosis and modulating immune reactivity. Biomaterials. 2016;156:16–27.
35. Li WJ, Tuli R, Huang X, Laquerriere P, Tuan RS. Multilineage differentiation of human mesenchymal stem cells in a three-dimensional nanofibrous scaffold. Biomaterials. 2005;26(25):5158–66.
36. Irawan V, Sung TC, Higuchi A, Ikoma T. Collagen scaffolds in cartilage tissue engineering and relevant approaches for future development. Tissue Eng Regen Med. 2018;15(5):673–97.
37. Basha RY, Doble M. Design of biocomposite materials for bone and cartilage tissue regeneration. Mater Sci Eng C. 2015;57:452–63.
38. Yan C, Sun J, Ding J, Chen X. Injectable nanocomposite hydrogel for cartilage tissue regeneration. ACS Appl Mater Interfaces. 2016;8(39):24281–92.
39. Hu S, Chen X, Liu M, Zhao Y, Shen J, Guo C, et al. Injectable silk fibroin hydrogel with mesoporous silica nanoparticles for cartilage regeneration. ACS Appl Bio Mater. 2020;3(5):3030–41.
40. Yan LP, Silva-Correia J, Oliveira MB, Vilela C, Pereira H, Sousa RA, et al. Bilayered silk/silk-nanoCaP scaffolds for osteochondral tissue engineering: in vitro and in vivo assessment. Acta Biomater. 2015;12:227–41.
41. Guo W, He Y, Zhang X, Lu W, Wang X, Guo Q. Clinical translation of advanced hydrogel-based systems for cartilage repair. Bioact Mater. 2021;6(10):3129–47.
42. Kon E, Filardo G, Di Martino A, Marcacci M. A novel nanostructured scaffold for cartilage regeneration: pilot clinical trial results at 1 year. Clin OrthopRelat Res. 2010;468(1):237–45.
43. Brittberg M, Recker D, Ilgenfritz J, Saris DB. Matrix-applied characterized autologous cultured chondrocytes versus microfracture: 2-year follow-up of a randomized study. Am J Sports Med. 2018;46(6):1343–51.
Published
Abstract Display: 90
PDF Downloads: 92 How to Cite
Issue
Section

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

